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Introduction

The method of least squares is used to solve a set of linear equations having more equations than
unknown variables. Since there are more equations than variables, the solution will not be
exactly correct for each equation; rather, the process minimizes the sum of the squares of the
residual errors. The method is very powerful and can be applied to numerous applications.

In the general case, the least-squares method is often used to solve a set of non-linear equations
that have been linearized using a first-order Taylor-series expansion. Solving non-linear
equations is an iterative process using Newton’s method. The speed of convergence is
dependent on the quality of an initial guess for the solution. The non-linear least-squares method
is often referred to as a bundle adjustment since all of the values of an initial guess of the
solution are modified together (adjusted in a bundle). This technique is also occasionally
referred to as the Gauss-Newton method.

The least-squares method is not new; Legendre invented the method in 1805, and reference
books have mentioned least squares in their titles as early as the 1870s. However, in most books
about least squares, the general method is bound inextricably with the book’s primary subject
matter. There is little uniformity between different books, or even within a single book, on the
designation of different variables. This makes it difficult to understand the method. This paper
provides a new description of least squares which hopefully describes the process in a simple and
straight-forward manner. A complete derivation of the method is not provided, only a functional
description. Familiarity with matrices and partial derivatives is assumed.



An example problem is provided, computing the location of a circle based on a set of points.
The example shows a linear solution and an iterative nonlinear solution to this problem as well as
some error analysis.

List of Symbols

: coefficients of a linear equation

£ relative size of adjustment compared to initial value
F(x,,x,,X,,...)  equation based on a set of unknowns. This is not necessarily a function. The

equation must be solved for the value (i.e., E(xl,xz,x3,...) = k;) whose error
will be minimized

Fisher(a,v,,v,) the Fisher distribution

J the Jacobian matrix. This is the partial differentials of each equation with respect
to each unknown. Sometimes written J = VE(xl,xz,x3,...), where V is del,
the gradient operator

K vector of residuals. Each component is the difference between the observation,
k., and the equation evaluated for the initial guess, x,,

k, an observation. The least-squares process minimizes the error with respect to the
observations

N the normal matrix. N=J'WJ

Q cofactor matrix. The inverse of W. This is typically the standard deviations of
the measurements

Q. the covariance matrix. Also called the variance-covariance matrix. Q_ =N"'

Q. a sub-matrix of the covariance matrix. Used to calculate an error ellipse

q.. a value within the covariance matrix

r the degrees of freedom. This is the number of equations minus the number of
unknowns

502 the reference variance. This is used to scale the covariance matrix

S s length of the semi-axis of an error ellipse based on the covariance matrix

S i length of the semi-axis of an error ellipse with a specific confidence level

w weighting matrix. This is a square symmetric matrix. For independent
measurements, this is a diagonal matrix. Larger values indicate greater
significance

w, the diagonal components of the weighting matrix

X vector of initial guesses for the unknowns

X' vector of refined guesses for the unknowns. X'= X+ AX

X, an unknown value. This is solved for in the least-squares process

x,' the refined guess for an unknown value. x,'=x,, + Ax;

X, the initial guess for an unknown

AX vector of adjustment values. The initial guesses are adjusted by this amount



Ax; an adjustment value. This is added to the initial guess to improve the solution
F(v) the Gamma distribution

General Technique

The general least squares process can be used to solve a set of equations for a set of unknowns.
The only requirement is that there are at least as many equations as there are unknowns.

If the equations are linear, the least-squares process will produce a direct solution for the
unknowns. If the equations are not linear, an initial guess of the unknowns is required, and the
result is an adjustment to the initial parameters. This is repeated until the results converge (the
adjustments become very close to zero). The linear case is an adjustment using zero as the initial
guess of all parameters.

The process requires a set of equations with the unknowns on one side and some known quantity
on the other. Let x; be the set of unknowns, and let the equations be of the form

E(x,,%,,%;,...) =k,

1

where £, is the observation (value) whose least-squares error will be minimized. Since there are

more equations than unknowns, the solution of the unknowns will not be exact. Using the
solution to compute the equation, E(xl,xz,x3,. ) .), will not generate the exact observation value,

k.. The square of the difference between the evaluated equation and the observation is

1

minimized.

There is typically one equation for each observation. In photogrammetry, this might be one
equation for each x pixel coordinate and one equation for each y pixel coordinate. Each equation
is not required to have all of the unknowns in it.

The Jacobian matrix, J, is the matrix of the partial differentials of each equation with respect to
each unknown. That is,

[OF O0F oF |
ox, Ox, Ox,
0F, OF, OF,
J=|ox, ox, ox
O0F, OF, OF
ox, Ox, Ox,

In general, the height of the Jacobian matrix will be larger than the width, since there are more
equations than unknowns.



Furthermore, let the vector K be the vector of the residuals. A residual is the difference
between the observation and the equation calculated using the initial values. That is
k, _Fl(xm’xzmxw’-'-)
_ kz_Fz(xlo:xzoaxwa'--)

k, —F3(x]0,x20,x30,...)

One further parameter is a weighting matrix, W. This is a matrix which includes the expected
confidence of each equation and also includes any dependence of the equations. A larger value
in the weighting matrix increases the importance of the corresponding equation (larger values
indicate greater confidence). It is a square symmetric matrix with one row per equation. The
main diagonal contains the weights of the individual equations, while the off-diagonal entries are
the dependencies of equations upon one another. If all of the observations are independent, this
will be a diagonal matrix. The cofactor matrix, Q, is the inverse of the weighting matrix (i.e.,

Q=W").

Let x,, be an initial guess for the unknowns. The initial guesses can have any finite real value,

but the system will converge faster if the guesses are close to the solution. Also, let X be the
vector of these initial guesses. That is

It is desirable to solve for the adjustment values, AX. This is the vector of adjustments for the
unknowns

where, based on the initial guess, X, and an adjustment, AX, a set of new values are computed
X'=X+AX

To solve for AX, (see the references for the reasoning behind this solution)
AX = (I'WI) J'WK

In various texts, the normal matrix, N, is defined as
N=J'WJ,
and the covariance matrix (sometimes referred to as the variance-covariance matrix), Q. , is

defined as
Q. =(Iwi)' =N"



If the weighting matrix is diagonal, then AX can be solved by row reduction of the matrix

OF’ OF, oF, OF, oF, oF,
Z(@xl Wi] Z(@xl o, W’) Z(@xl o, Wi) Z ox, (ks =, (5o oo
OF. OF OF.’° OF. OF OF.
——Lw, —L W it St S VYR IO ik -F )
Z{ﬁxl ox, Wz] Z(axz Wz} Z[axz or, sz Z 8x2( i z(xloaxzoaxzo’ ))Wz
OF OF OF OF, OF° OF,
i LIV i LI i . — L k_F , , yenn )
ZI:( ox, ox, Wz] Z( ox, ox, WZJ Ei :( o, W,J Z o, ( i :(x.lo X205 %20 ))W

where w;,w,,w;,... are the diagonal elements of the weighting matrix. Note that the left side of

the matrix is the normal matrix, N .

The initial guesses, x,,, are updated using the solution of the adjustment matrix, AX, as follows
X'=X+AX

or
xX'=x, + Ax,

The process is repeated using the new values, x,', as the initial guesses until the adjustments are

close to zero.

Practically, an adjustment is close to zero when it is small compared to the absolute magnitude of
the value it is adjusting, i.e., Ax, <Xx,,-&, where ¢ is a small value. The actual value for ¢ can
be selected based on the number of decimal digits of precision used in the calculations.
Typically, the order of magnitude of ¢ will be a few less than the number of digits of precision.
For example, if the calculations are done on a computer using standard double precision (8-byte)
values, the computer can hold around 15 digits of precision; therefore & ~107".

Potential Problems

There are conditions where the solution will not converge or will converge to undesirable values.
This process finds a local minimum. As such, there may be a better solution than the one found.
A solution is dependent on the equations, E(xl,xz,x3,...), being continuous in Xx,,x,,X;,.... The

first and second derivatives do not need to be continuous, but if the equations are not continuous,
there is no guaranty that the process will converge. Also, in certain circumstances, even if the
equations are continuous, the solution may not converge. This can happen when the first and
second derivatives of the equations have significantly different values at the initial values than at
the solution.

In any case where the solution does not converge, a solution may still be able to be obtained if
different starting values, x,,, are used.



Linear Technique

For sets of linear equations, the least-squares process will produce a direct solution for the
unknowns. The linear case is mathematically the same as the general case where an adjustment
is performed using zero as the initial guess of all parameters. Only a single iteration is required
for convergence.

The equations must be of the form
F(x,,%,,%;,...) = ayX, + a,X, + asx, +... = k,

The Jacobian matrix, J, is therefore
a4y 4y
a 4y 4y

Q3 Gy 4y
where a is the ith coefficient of the jth equation.

Since the initial guesses are all zero, the vector of residuals, K, is

If the weighting matrix is diagonal, then AX can be solved by row reduction of the matrix

_Z(ah.zwl_) Z(aliaZiWi) Z(all%, ,) Z(ahklw)

i i i

Z(aliaZiWi) Z(aZizwi) Z(%:%; 1) Z(aZikiWi)

i i i

Z(aliaSiWi) Z(aZiaSiWi) Z(aSizwi) "’Z(a3ikiwi)

i i i L

The final solution will be the adjustment values. That is
X=AX

or
x, = Ax.

1 l



Error Residuals, Ellipsoids, and Confidence

The covariance matrix, Q_ , contains the variance of each unknown and the covariance of each

xx 2

pair of unknowns. The quantities in Q,, need to be scaled by a reference variance. This

reference variance, SO2 , 1s related to the weighting matrix and the residuals by the equation
K'WK

==

where r is the number of degrees of freedom (i.e., the number of equations minus the number of
unknowns).

S,

For any set of quantities, an error ellipse can be calculated. The dimensions and orientations of
the ellipse are calculated from the coefficients of the covariance matrix. Only the coefficients of
the covariance matrix in the relevant rows and columns are used. This is the appropriate n x n
sub-matrix, where n is the number of dimensions for the error ellipse. The sub-matrix is
symmetric.

The ellipse matrix is composed of entries from the covariance matrix. For example, a three-
dimensional error ellipsoid is computed from

Qana q,\:)ca,7 qxxw

! p—
Qxx - Q)cxba qxxbb qml,p
q)ocm qmcb qmrC

where ¢ are values from the covariance matrix Q_, and a, b, and c are the indices for the
ij

xx 2

unknowns for which the ellipse is computed.

The error ellipse semi-axes are given by

Saxis = i\/Sozeigenvalueaxis (Q;r)
The orientation of the error ellipse is the column eigenvectors of Q' .

To determine the error to a specific confidence level, the length of the semi-axis is multiplied by
a confidence factor based on the Fisher distribution using the formula

S i = Sam\/ 2 Fisher(l — confidence,#of unknowns, r)
where the confidence is a number from 0 to 1, with 1 being complete confidence, and r is the

axis%

number of degrees of freedom. The Fisher distribution is determined from the equation

I (v, +v,)/2) (h}“/z K22
Fisher(cr,v,,v, ) F(vl/ 2 )F(v2 / 2)k Va [1 + (Vl/ V) )]x(v1 +ve)f2
where the Gamma function, F(v) , 1s given by

dx

o=

r(v)=|u""e™"du

S =38



An Example Problem

Given a set of two-dimensional points, find the circle best %
represented by these points.

For this example, there are 82 points, see also the figure to the right:

3,8 13,8 181 17,11 920 -121 -812 72 1,7 :
4-9 148 182 16,12 820 221 811 -6,1 2.8 . :
59  15-7 183 16,13 720 320 -810 -5,0 * :
69 166 184 1514 621 419 -89  -4-1 : <X
79 165 185 1515 521  -518 -88  -4.2 : x
89 174 18,6 14,16 421  -617 -87  -3.3

99 17-3 18,7 13,17 322 7,16 8,6 2,4

10,9 17,2 188 12,18 222 -7,15 -85 2.5 Aset of points used to
11,8 18-1 189 11,18 122 -814 -84  -1-6 approximate a circle
12,8 18,0 17,10 10,19 022 -8,13 -73 0,7

Let the points be denoted (x,,y,). Thatis, (x,,y)=(3,-8), (x,,»,)=(4,-9), (x;,y;)=(5,-9), ...

A circle can be defined by the equation

Vo=, +(r=»,) =7

where (x,,,) is the center of the circle and r is the radius of the circle.

Ideally, it is desirable to minimize the square of the distance between the points defining the
circle and the circle. That is, minimize

Z{(\/(xi —x) + (=0 ) —rﬂ

i

This is equivalent to performing the least-squares process using the equations
Fi(xO’yO’r): \/(xi - xo)2 + (yi - J’o)2 -r=0

A Linear Solution

The equation of a circle is not linear in the unknown values x,, y,, and ». The equation of a

circle can be written in the linear form
A(X* +y )+ Bx+Cy =1

where
A= 2 12
r=Xx =Y
—-2x
B = 2 20 2
r=x —XYo
C = _2y0



This can be rewritten for the original unknowns as
_-B
T 24
_-C
S 24

Na4A+B*+C?
24

Note that by using the linear form of the circle equation, the square of the distance from each
point to the circle in not the value that is being minimized.

Xo

Yo

Using the equation A(x”>+ y*)+ Bx+ Cy =1 with the unknowns A, B, and C, the Jacobian
matrix is
[0F, OF, 0OF |
4 B C x’+y0ox o»
J- ajz 8§2 5‘(];“2 _ xzj + J’Zj X, W
0E, OF OF, Xy Yy X ),
A B C : o

Placing num_erical values in th_e Jacobian matrix gives
32+(-8) 3 -8 [73 3 -8
4 +(-9¢ 4 -9| |97 4 -9

J= =
524(-9F 5 -9| |106 5 -9

Since all initial guesses are zero, the residual vector is

k] 1
B!

ky| |1

Lacking other information, the weighting matrix, W, is the identity matrix. That is
W=1

The unknowns, 4, B, and C, can be solved for using the equation
X='wi) IwK = (1) 3K
This can be simplified to



- -1~ -

> (7 +57)) Yl v)e) T+ )| | 2 +52)

i i i

Z((xi2+yl.2)xi) | Z(xiz) Z(xiyi) zxi

i i i i

z((xiz_'_yiz)y[) Z(xiyi) Z( 52) Zyi

i i i L i .

O T
I

Numerically, this is

A7 [7954653 177852 234765 [22125
B|=| 177852 9840 1242 438
C| | 234765 1242 12285 497

Solving for the unknowns, this is
A] [0.006328442803

B | =|-0.06048422085
C| [-007436511782

Solving for the circle parameters, this is
x, =4.778760172

Vo =35.875467325
r =14.67564038

This solution is shown superimposed on the original points in the
figure to the right. Note that the circle does not fit the data points
very well because the solution used the linear form of the circle
equations. A much better fit can be obtained using the nonlinear
equations.

A circle calculated by a
linear least-squares fit

A Nonlinear Solution

Instead of solving for the linear parameters, 4, B, and C, it is more desirable to solve for the
values x,, y,,and r using an equation that minimizes the distance from the points to the circle.

The following equation is used
V=3, ) +(, =3, ) =r=0

The Jacobian matrix is

[O0F OF OF |
Xo Yo r
oF, OF, OF,
I=1 x Yo r
oF, OF, OF,
Yoo o T

10



where

oF X, — X,

Xo \/xiz—2x0xl.+yl.2—2y0yl.+x02+y02
oF, _ Yo~ Vi

Yo \/)cl.2 —2x,x, + y[2 A xo2 + y02
CLI

r

The solution of x,, y,, and » will require multiple iterations. A starting guess for these values
is required. The starting guess can be arbitrary provided the equations are valid. A starting
guess of
x, =0
Yo =0
r=15
will be used.

Placing numerical values in the Jacobian matrix gives
-0.3511234415 0.9363291775 -1

-0.4061384660 0.9138115486 -1
-0.4856429311 0.8741572761 -1

The residual vector is
O‘W (=% )"+ 1 = o) ‘r) 6.455996254
K = 0—(\/(x2—x0)2+(y2—y0)2 —r) _| 151142198

14.704369858
0—(\/()6 —x0)2+(y3—y0)2—r) :

Again, lacking other information, the weighting matrix, W, is the identity matrix.
The adjustments of the unknowns, Ax,, Ay,, and Ar, can be solved for using the equation
AX = (Fwa ) I'WK = (39) 3K

Numerically, this is
Ax, 39.46860791 -3.660842352 17.4284646271 '[176.5730305
Ay, | =|-3.660842352 42.53139208 18.73056460 | |216.0415308
Ar 17.42846462  18.73056460 82 37.54002153

11



Solving for the adjustment values, this is
Ax, 6.134768609

Ay, |=| 6.649105121
Ar -2.364891088

The circle parameters are then adjusted to
X, =X, +Ax, =0+6.134768609 = 6.134768609

!

Yo =Yy +Ay, =0+6.649105121=6.649105121
r'=r+Ar=15+-2.364891088 =12.63510891

This new solution is now used to compute a new Jacobian matrix and a new residual vector,

which are then used to again solve for AX. The next iteration is
1

Ax, 39.76862489  -2.956924437 -1.776388618 | | -42.60616227
Ay, | =1-2.956924437 42.23137510 -2.280678045 | | -19.41000442
Ar -1.776388618 -2.280678045 82 132.7928421

-1.033761936
=|-0.4464161055
1.584613997

The circle parameters are now adjusted to
X, =X, +Ax, =6.134768609 +-1.033761936 = 5.101006672

!

Yo =Y, +Ay, =6.649105121+-0.4464161055 = 6.202689015
r'=r+Ar=12.63510891+1.584613997 =14.21972290

Additional iterations are performed until the adjustment values

become close to zero. When performing computations with ten

significant figures, after nine iterations, the values have converged to
x, =5.155701836

¥, =6.233137797
r =14.24203182

This solution is shown superimposed on the original points in the TTeveeces®
figure to the right. Note that the circle fits the data points

significantly better than the linear solution. A circle calculated by a

nonlinear least-squares fit

An Error Ellipse

To determine the expected error of the nonlinear solution of the circle, the error ellipse can be
calculated. To illustrate this, the error ellipse of the circle’s center will be computed.

12



The error ellipse is computed using the covariance matrix
0.02523150611  0.001765315825 -0.000307759723

Q. = (J’WJ)_1 =| 0.001765315825  0.02385684640  0.0002653637522
-0.000307759723 0.0002653637522  0.01220234392
Since only the error ellipse for the center of the circle, (xo, yo), is desired, the matrix of interest is
, 0.02523150611 0.001765315825
s {0.001765315825 0.02385684640 }
The matrix Q' is composed of the entries in the first two columns and rows of the matrix Q

since x, corresponds to the first column and y, to the second column of the Jacobian matrix.

The eigenvalues of Q' are

i 0.02643857914
eigenvalues(Q', )=

0.02264977336

The eigenvectors specify the orientation of the ellipse. The eigenvectors are
0.8254760367} [ 0.5644371646}

eigenvectors(Q’ . )=
g Q) {0.5644371646 0.8254760367

The reference variance is computed based on the residual matrix and on the degrees of freedom.

The number of degrees of freedom is the number of observations (82 observations — the number
of points used to compute the circle) minus the number of unknowns (3 unknowns — x,, y,, and

r). The reference variance is

t
:_ KWK _ 145.8856282 _ 1846653521

¢ 82-3 79

The error ellipse can be computed for any confidence level. The Fisher distribution needs to be
computed for the selected confidence. Although the reference variance was computed based on
the total number of unknowns, the Fisher distribution is computed only for the number of
unknowns in the ellipse. For 95% confidence

Fisher(1 - 0.95,2,79) = 3.11227

Based on this information, the semi-axes of the error ellipse are
Spgjor = S, eigenvalue\/2 Fisher(1-0.95,2,79)
=/1.846653521-0.02643857914+/2-3.11227 = 0.551271
S . =/1.846653521-0.02264977336~/2-3.11227 = 0.510244

minor

13



The 95% confidence error ellipse is shown on the same graph as the
circle, see figure to the right. The error ellipse has been magnified by
a factor of 5 to make it more visible.

The meaning of the 95% confidence error ellipse is that if more
points are added to improve the calculation of the circle, there is 95%
probability that the center of the circle will remain within the area
specified by the ellipse. As expected, as more points are used to
compute the circle, the area of the ellipse becomes smaller. If the .
points lie closer to the actual circle, this will also reduce the ellipse BEITIIN
area.

The error ellipse for the
center of the circle
magnified by a factor of 5
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